Neurobiology and Anatomy website banner

John H. "Jack" Byrne, Ph.D.

June and Virgil Waggoner Chair
Chairman, Department of Neurobiology and Anatomy

Telephone: 713.500.5602
E-mail Dr Byrne

Neurobiology and Anatomy > Department Faculty > John H. (Jack) Byrne, Ph.D.
See Also: Dr Jack Byrne's Lab Website | Message From The Chairman | Curriculum Vitae [ pdf ]
View Dr Byrne's Feb 16 2010 lecture on Neural Networks at Rice University's Scientia Institute: Watch Video | Lecture Info
See a brief biographical YouTube video on Dr Byrne: Watch Video

Neural And Molecular Bases Of Learning And Memory

John H. "Jack" Byrne, Ph.D. The research interests of this laboratory are the neuronal and molecular mechanisms underlying learning and memory. The marine mollusc Aplysia californica is being used as a model system. In Aplysia we are studying mechanisms of implicit (nondeclarative) memory associated with simple forms of learning such as habituation, sensitization, classical or Pavlovian conditioning and operant conditioning.

A variety of molecular, biochemical, biophysical, electrophysiological and imaging techniques are used to analyze the properties of the neural circuits and the individual neurons.

The empirical analyses are complemented with realistic mathematical modeling in order to determine the extent to which the observed processes and their interactions are sufficient to explain the behavior of the system.





Selected Reading

Byrne, JH, Kandel, ER. (1996) Presynaptic facilitation revisited: State and time dependence. J. Neuroscience, 16(2): 425-435.

Zhang, F, Endo, S, Cleary, LJ, Eskin, A, Byrne, JH. (1997) Role of transforming growth factor-ß in long-term synaptic facilitation in Aplysia. Science, 275:1318-1320.

Smolen, P, Baxter, DA, Byrne, JH. (2000) Mathematical modeling of gene networks. Neuron, 26:567-580.

Brembs, B, Lorenzetti, FD, Reyes, FD, Baxter, DA, Byrne, JH. (2002) Operant reward learning in Aplysia: Neuronal correlates and mechanisms. Science, 296:1706-1709.

Angers, A, Fioravante, D, Chin, J, Cleary, LJ, Bean, AJ, Byrne, JH. (2002) Serotonin stimulates phosphorylation of Aplysia synapsin and alters its subcellular distribution in sensory neurons. J. Neurosci., 22:5412-5422.

Mohamed, HA, Yao, W, Fioravante, D, Smolen, P, Byrne, JH. (2005)  cAMP-response elements in Aplysia creb1, creb2, and Ap-uch promoters. Journal of Biological Chemistry, 280: 27035-27043.

Smolen, P, Baxter, DA, Byrne, JH. (2006) A model of the roles of essential kinases in the induction and expression of late long-term potentiation.  Biophysical Journal, 90:2760-2775.

Fukushima, T, Liu, RY, Byrne, JH. (2007) Transforming growth factor-β2 modulates synaptic efficacy and plasticity and induces phosphorylation of CREB in hippocampal neurons.  Hippocampus, 17:5-9.

Antzoulatos, EG, Byrne, JH. (2007) Long-term sensitization training produces spike narrowing in Aplysia sensory neurons.  J. Neuroscience, 27:676-683.

Song, H, Smolen, P, Av-Ron, E, Baxter, DA, Byrne, JH. (2007) Dynamics of a minimal model of interlocked positive and negative feedback loops of transcriptional regulation by cAMP-responsive element binding proteins.  Biophysical Journal, 92:3407-3424.

Fioravante, D, Liu, RY, Netek, A, Cleary, LJ, Byrne, JH. (2007) Synapsin regulates basal synaptic strength, synaptic depression and serotonin-induced facilitation of sensorimotor synapses in AplysiaJ. Neurophysiology, 98:3568-3580.

Smolen, P, Baxter, DA, Byrne, JH. (2008) Bistable MAP kinase activity: a plausible mechanism contributing to maintenance of late long-term potentiation.  Am. J. of Physiology-Cell Physiology, 294: C503–C515.

Lorenzetti, F.D., Baxter, D.A. and Byrne, J.H.  Molecular mechanisms underlying a cellular analogue of operant reward learning.  Neuron, 59: 815-828, 2008.   NIHMSID # 70417.

Mozzachiodi, R., Lorenzetti, F.D., Baxter, D.A., and Byrne, J.H.  Changes in neuronal excitability serve as a mechanism of long-term memory for operant conditioning. Nature Neuroscience, 11:1146-1148, 2008.

Fioravante, D., Liu, R.Y. and Byrne, J.H.  The ubiquitin-proteasome system is necessary for long-term synaptic depression in Aplysia. J. Neuroscience. 28:10245-10256, 2008. NIHMSID # 72703.

Mozzachiodi, R. and Byrne, J.H. More than synaptic plasticity: Role of nonsynaptic plasticity in learning and memory. Trends in Neurosciences 33:17-26, 2010.  NIHMS #157344, PMID #19889466

Zhang, Y., Smolen, P.D., Baxter, D.A. and Byrne, J.H.  The sensitivity of memory consolidation and reconsolidation to inhibitors of protein synthesis and kinases:  Computational analysis.  Learning and Memory, 17: 428-439, 2010.

Liu, R.Y., Shah, S., Cleary, L.J. and Byrne, J.H.  Serotonin- and training-induced dynamic regulation of CREB2 in Aplysia. Learning and Memory, 18:245-249, 2011.

Liu, R.Y., Cleary, L.J. and Byrne, J.H.  The requirement for enhanced CREB1 expression in consolidation of long-term synaptic facilitation and long-term excitability in sensory neurons of Aplysia. J. Neuroscience, 31:6871-6879, 2011.

Lorenzetti, F.D., Baxter, D.A. and Byrne, J.H.  Classical conditioning analog enhanced acetylcholine responses but reduced excitability of an identified neuron.  J. Neuroscience, 31:14789-14793, 2011. PMCID: PMC3198865

Hart, A.K., Fioravante, D., Liu, R.Y., Phares, G.A., Cleary, L.J., and Byrne, J.H. Serotonin-mediated synapsin expression is necessary for long-term facilitation of the Aplysia sensorimotor synapse. J. Neuroscience, 31:18401-18411, 2011. PMID#22171042, NIHMSID#347966.

Zhang, Y., Liu, R.Y., Heberton, G.A., Smolen, P.D., Baxter, D.A., Cleary, L.J. and Byrne, J.H.  Computational design of enhanced learning protocols Nature Neuroscience, 15:294-297, 2012. PMID#22197829

Liu, R.Y., Zhang, Y., Baxter, D.A. Smolen, P., Cleary, L.J. and Byrne, J.H. Deficit in long-term synaptic plasticity is rescued by a computationally predicted stimulus protocol. J. Neuroscience, 33:6944-6949, 2013.

Liu, R.Y., Zhang, Y. Coughlin, B., Cleary, L. and Byrne, J.H. Doxorubicin attenuates serotonin-induced long-term synaptic facilitation by phosphorylation of p38 mitogen-activated protein kinase. J. Neuroscience, 34:13289-13300, 2014. PMCID: PMC4180468

Search PubMed for additional articles.

The University of Texas Health Science Center at Houston (UTHealth) - Medical School

Copyright © 2009-Present by The University of Texas Health Science Center at Houston (UTHealth)
University Site Policies | State of Texas | Email Site Publisher
Date Last Modified: September 28, 2015 1:25 PM
Need help opening PDF or DOC files? 

Dept of Neurobiology and Anatomy | The University of Texas Medical School at Houston | 6431 Fannin St - Suite MSB 7.046 | Houston, TX 77030 USA | Tel: +1 713 500 5601 | Site Map