IMMUNOBIOLOGY OF TRANSPLANTATION

Wasim Dar
Immunobiology of Transplantation

- Overview
 - Transplantation: A complex immunologic process
 - Contributions
 - Innate Immunity
 - Adaptive immunity
 - T Cells
 - B Cells
 - HLA
 - Consequences of Transplantation
 - Rejection
 - Cellular
 - Antibody mediated
 - Graft loss
 - Tolerance
Immunobiology of Transplantation: Innate Immunity

• Inflammatory response
 • Recovery of organs and subsequent transplant induces an inflammatory response
 • Innate immunity contributes substantially to the early response in transplantation

• Ischemia reperfusion
 • Toll Like Receptors (TLR)
 • Damage associated molecular patterns (DAMPS)
 • Injury vs. upregulation of adaptive immunity

• Complement
 • Injury vs. upregulation of innate immunity
 • Chronic injury
Immunobiology of Transplantation: Ischemia Reperfusion Injury

• TLR
 • Pattern recognition receptors on immune and non-immune cells
 • Recognize LPS and DAMP’s
 • TLR are expressed in renal tissue such as renal tubules (TLR2/TLR4)
 • Activation of TLR leads to activation of apoptotic pathways and increased cytokine and chemokine release.
Immunobiology of Transplantation: Ischemia Reperfusion Injury

• I/R injury
 • Recovery of organs and reperfusion results in ischemia reperfusion injury
 • This results in increased expression of TLR and their cognate antigens DAMPs
 • Activation of this cascade leads to greater cascade of tissue injury.
Immunobiology of Transplantation: Ischemia Reperfusion Injury

- What is amplified by this process?
 - Immune cell migration
 - Immune cell activation
 - Tissue death
 - Direct
 - Indirect
Immunobiology of Transplantation: The role of complement

- Complement
 - A system of protein recognition molecules, enzymes, and effector products that provides innate defense against pathogens
- Three pathways
 - Classical
 - Lectin
 - Alternative
- Peripheral versus Intravascular complement components
Immunobiology of Transplantation: The role of complement

- Complement
 - Activation of complement pathways affects transplanted organs via multiple mechanisms
 - Ischemia reperfusion
 - Lectin pathway
 - Alternative pathway
 - Peripheral activation of complement
 - Direct tissue injury and release of inflammatory/chemotactic products
Immunobiology of Transplantation: The role of complement

- Complement
 - Activation of complement pathways affects transplanted organs via multiple mechanisms
 - Upregulation of innate immunity
 - Complement components acting on antigen presenting cells and on T-cells
 - 1. APC effectiveness - costimulatory molecules
 - 2. T cell survival
 - Complement’s diagnostic role (see later)
Immunobiology of Transplantation: Adaptive Immunity

- Adaptive Immunity
 - T cells
 - B cells
 - HLA
- Most well studied immunologic component of biology of transplantation
- FYI
 - Most therapies to promote clinical success of transplantation are focused on adaptive immunity
 - Immunosuppression
 - Tolerance induction
Immunobiology of Transplantation: T-Cells

- T-Cells
 - Thymus derived lymphocytes
 - Development of these cells is not driven by alloimmunity but rather protection against pathogens
 - However the nature of T-cell development requires interaction with other human cells (HLA)
 - This results in 10% of the entire T-cell repertoire being allospecific
Immunobiology of Transplantation: T-Cells

- The vast repertoire of T-cells directed for allospecificity represent a critical issue in the inflammatory response against transplanted organs.
- Activation of these T-cells results in the generally negative consequences following transplantation (if untreated):
 - Acute cellular rejection
 - Graft loss
- Mechanisms of activation i.e. allo-recognition:
 - Direct
 - Indirect
Immunobiology of Transplantation: T-cells and the TCR

• TCR
 • Activation of the TCR and interaction between the TCR, MHC, and co-stimulation molecules are critical for T-cell activation and the subsequent response to transplanted organs
 • Incomplete/ineffective activation
 • Leads to cell death, anergy, and tolerance.
Immunobiology of Transplantation: B-cells

- B-cells
 - Early on in transplantation, contribution of B-cells was not well recognized
 - B-cell contributions to transplant biology (just some)
 - Hyperacute rejection
 - The Crossmatch
 - Antibody mediated rejection
 - Graft fibrosis and chronic graft injury
 - Sensitization
 - IVIG
 - B-cell activation:
 - T-cell mediated
 - B memory cell
Immunobiology of Transplantation: B-cells

- **B-cells**
 - ABO incompatibility
 - Liver transplantation vs. Kidney transplantation
 - Hyperacute rejection
 - Nearly immediate rejection mediated by pre-formed antibodies to donor HLA molecules
 - IgG-Donor specific antibody
 - Type I versus Type II-Terasaki
 - Antibody mediated rejection
 - Late effect of antibodies against donor HLA
 - Sources
 - Pre-formed
 - De Novo
Immunobiology of Transplantation: B-cells and chronic graft injury

• What causes grafts to fail long-term?
 • Graft fibrosis and chronic injury
 • Kidney-IFTA-interstitial fibrosis and tubular atrophy
 • Liver-vanishing bile duct syndrome
 • Lung-bronchiolitis obliterans syndrome
 • Heart-chronic coronary artery changes
 • Contributors
 • Infection-CMV, BK
 • Antibody mediated damage is likely the prime causal agent in chronic graft injury
 • Sensitization is a process by which antibody forms in patients as exposure to alloantigens increases
 • Pregnancy
 • Transplant
 • Transfusion
 • Sensitization leads to alloantibody (IgG against HLA) production and subsequent antibody mediated graft injury => chronic graft injury and graft loss
Immunobiology of Transplantation: B-cells and the Crossmatch

- Terasaki-antibodies against HLA are detrimental to graft outcome
 - Crossmatch
 - CDC crossmatch
 - Indirect vs. direct
 - Flow crossmatch
 - Virtual crossmatch
 - Class I versus Class II
 - Which organs?
 - Heart, Liver, Lung, Pancreas, Kidney, Intestine.
Immunobiology of Transplantation

HLA

- MHC
 - Set of genes encoding 6 major antigens or HLA’s
 - A, B, C(w) class I
 - DP, DQ, DR class II
 - Incredible diversity among humans
 - Allospecificity of T-cells is driven by differences in HLA
 - Is tissue typing and crossmatching necessary?
 - Kidney
 - Liver
 - Heart
 - Lung
 - Are all HLA equally important?
 - HLA A, B, DR
 - Graft outcomes with and without matching
 - HLA DQ
Immunobiology of Transplantation Outcomes or putting it all together

• Transplant occurs across different MHC in humans, i.e. allogeneic

• Transplanted organs need to be procured resulting in ischemia-reperfusion injury.

• I/R injury induces direct innate immune mediated organ damage as well as priming the adaptive immune system

• Adaptive immunity namely T-Cells and B-Cells become activated via direct and indirect allo-recognition.

• Activated T-cells mediate tissue injury-ACR. Activated B-cells form antibody-AMR

• Immune injury is a primary contributor to early and then late graft loss
• Occasionally though a different outcome can occur.
Immunobiology of Transplantation

Tolerance

• The “Holy Grail” of transplantation
 • Clinical data for its existence
 • Non-compliant patients who don’t lose grafts
 • BMT+solid organ transplant recipients off immunosuppression
 • Types
 • Central versus peripheral
 • Mechanisms
 • Central regulation
 • Anergy
 • Apoptosis
 • Suppression
 • Regulatory cells
 • T and B cells can be regulatory cells
 • TCR and T-reg cells
Questions?