Interprofessional Experiences (IPE) in healthcare education foster increased collaboration across disciplines, as well as improve patient care and patient satisfaction. However, the benefits of IPE in biomedical education specifically comprising of PhD graduate and MD medical students has not yet been investigated. An IPE using a problem based learning (PBL) pedagogy, grouping medical and graduate students, which involves investigation of questions without defined resolutions is anticipated to develop skills such as evidence acquisition, self-directed learning, and collaboration. Use of IPE-PBL in a combined cohort is expected to lead to increased mutual understanding and performance in respective careers.

**Methods:** The current study is an autoethnography of joint interprofessional experiences of medical and graduate students. Students participated in several IPE-PBL experiences as part of their medical/graduate training. Throughout this study, participants switched roles from participant to researcher, critically examining their experiences. A total of ten students, six graduate, three medical, and one MD-PhD student participated in the study. After completing various IPE courses, each participant composed a narrative detailing the strengths and challenges of their IPE as well as personal background accounts that may describe their biases prior to IPE. After narratives were collected, revisions for clarity were requested. A team of five participants performed contextual analysis and gleaned emerging themes based on the following research question: What are graduate and medical students' attitudes toward interprofessional experience pre- and post-participating in IPE?

**Results:** The following themes emerged from the contextual analysis about participants' attitudes prior to participating in IPE: (1) a sense of separation between clinical- and research-focused fields, (2) unfavorable preconceptions about students from the other discipline, (3) negative perceptions about group work in general. Emerging themes post-IPE were: Students from both programs expressed (1) feelings of appreciation for the work of the other group, (2) an increased sense of comradery, (3) the desire to seek IPE in their future careers.

**Discussion:** IPE between medical and graduate students in the biomedical field offers a unique opportunity to explore the roles each group plays in advancing medicine. Participation in IPE creates awareness of the roles each group can take, and how they can be mutually beneficial. Training programs with IPE between graduate and medical students are needed to nurture relationships between medical and biomedical researchers which may then grow into future multidisciplinary collaborations post-training.

**References:**
Success in contemporary medicine requires clinicians to display strong leadership skills, teamwork skills, and professionalism. We have made a conscious decision to assess these qualities as part of the admissions process and to promote development of these skills throughout the curriculum. The multiple mini-interviews (MMIs) have emerged as reliable measures of non-cognitive skills and are linked to success in medical school, but do not assess an applicant’s ability to function within a team environment. As teamwork skills are critical to success in our curriculum, we created an admissions task to be completed within a group environment. We describe here the creation and implementation of the group admissions task and scoring rubric to measure non-cognitive skills in teams and discuss how these skills are subsequently measured throughout the problem-based learning (PBL) curriculum.

**Methods:** During the group admissions exercise, five applicants worked together to form a single consensus response to a prompt. A facilitator evaluated each applicant on performance in each of five areas (collegiality, contribution to task, inclusiveness, movement to completion, and respectfulness). Ratings were based on a 1-6 Likert scale with criteria descriptions as anchors (e.g., inclusive: 1 = dominates content and process, 6 = fosters collaboration by soliciting input from others). The scoring rubric mirrors the assessment form used by PBL facilitators to rate students on their professionalism, teamwork, and leadership throughout the first-year curriculum. Prompts and scoring rubrics were piloted with multiple observers, and evaluators were trained on the scoring rubric using videos from the pilot. Descriptive statistics were calculated for group admission exercise scores.

**Results/Outcomes:** Preliminary results reveal variability in applicant performance on the group task in each of the five areas of interest. This suggests the exercise is able to distinguish amongst those with varying levels of non-cognitive skills. Correlation analysis suggests this exercise measures different types of skills than those measured by MMI, perhaps those more focused on teamwork and interpersonal communication. These results show promise for the development of more holistic assessments of applicants. Future work will explore the effectiveness of the MMI and group admissions assessments to predict student success on PBL assessments.

**Discussion:** Our school is engaged in a process of evaluating the components of its innovative admissions process for their relative effectiveness in predicting desirable non-cognitive skills in our future clinicians. Results indicate that we will produce information useful to other schools as they modify their admissions processes.

**References:**
In cancer, medical students may grasp the benefit of prevention but are more often drawn to the heroism of curing the disease, which has implications for populating the clinical cancer workforce in academia, possibly contributing to the low recruitment of clinicians into the field of cancer prevention. The purpose of this study was to identify barriers to pursuing careers in cancer prevention faced early in medical training by analyzing the career trajectory of clinicians currently in academic medicine and cancer prevention for opportunities to intervene.

Methods: Between July 2016 and October 2017, we conducted a qualitative analysis of structured interviews with faculty members at the University of Texas MD Anderson Cancer Center. Recordings and handwritten notes obtained from individual interviews with physicians involved in clinical cancer prevention were coded and analyzed using qualitative data management software, Atlas.ti. The preliminary themes that emerged from the analysis were then organized and presented to describe the various hindrances to entering careers in cancer prevention.

Results\Outcomes: Of three major barriers, the first centered around misconceptions participants had about the field of prevention when early in their training. Several participants said that they had initially viewed prevention to be more aligned with primary care or natural product medicine than relevant to oncology. A second common theme was the absence of clear career pathways and visible mentors due to the immaturity of the field of clinical cancer prevention. A final problem was the belief that clinical oncology and cancer prevention were mutually exclusive career pursuits. Multiple individuals indicated that either they or their colleagues perceived cancer prevention to oppose their work in oncology, rather than as its necessary complement.

Discussion: Identifying and addressing specific barriers to pursuing careers in academic cancer prevention may have important impact on reducing the burden of cancer. Suggested approaches include dispelling misconceptions through education, proposing innovative curricula that incorporate preventive oncology, offering clinical cancer prevention rotations, and increasing the prevention content of accrediting examinations.
Teaching and learning in a predominantly online Doctor of Nursing Practice program provides the benefit of flexibility of schedule for faculty and students. However, with limited face-to-face time, the challenge is to influence and actively engage students in the learning process. Innovative activities and simulations provide a chance for students to interact directly, and choosing stimulating learning activities is critical for students to appreciate making the trip to campus. Games and simulations can increase active participation and motivate learning.

**Methods:** An interactive team-based learning game that simulates the dynamics of a complex system is utilized in the DNP Quality Improvement (Q.I) for Clinical Practice course. The activity promotes an understanding of key QI principles in a way that helps students appreciate the relevance and interplay of the individual components. The game simulates a 24-hour day in hospital setting and teaches students to think systematically and collaborate across functional boundaries to achieve system goals. A thorough debriefing post-game gives students the opportunity to reflect on their attitudes, assumptions, and beliefs that led to actions and results during the simulation as well as the chance to correlate the concepts to the DNP Essentials. In the debriefing, the key principles of collaboration, innovation, and data-driven decision-making are directly tied to the Quadruple Aim, which focuses on improving the health of populations, improving the patient experience, reducing the per capita cost of healthcare, and improving clinician and staff satisfaction.

**Results or Outcomes:** Students enjoy the 'experiential learning', and the hospital simulation game provides an opportunity for them to share a common experience that we refer to throughout the course and even during subsequent courses in the curriculum. Students report gaining valuable insight into their own thinking processes and describe how the game increases their understanding of how the key concepts of collaboration, innovation, and data-driven decision-making impact the quality of healthcare. Combined with QI methodologies and strategies, the simulation game better prepares students to develop and implement the quality improvement project course assignment.

**Discussion:** The need for quality and safety in patient care has been well documented in reports from the Institute of Medicine. Since the game's healthcare quality principles are threaded into other courses in the curriculum, students have a chance to practice recognizing and applying the concepts in various contexts and from different perspectives. The simulation game provides a means to integrate theory into courses and have students use theory, as well as evidence, as a foundation for their scholarly practice projects and other assignments.
Health science professionals initiate ongoing development that extends beyond their initial educational preparation, yet face the challenge of staying current. One challenging area, perhaps due to deficits in educational preparation, is working with patients who identify as transgender. Evidence-based practice (EBP) guidelines exist to support care for transgender patients. The compelling need to prepare health science students to address this care gap has never been greater but are faculty a barrier? Transgender clients report having to educate health care professionals.

"When in the hospital I was really sick. I didn't only not feel up to explaining (transgender) but I was afraid if I did I might receive worse care".

**Methods**: To support health science student’s understanding of these national EBP guidelines and implementation of best practices, CHANGE is required in how faculty themselves think and teach about the needs of the transgender population. Evidence-based health science websites were reviewed to distill resources useful for faculty self-education on transgender guidelines and nationally recommended changes applicable to educating our students.

**Results\Outcomes**: EBP guideline related to transgender care from the following sources will be shared:
- The Agency for Healthcare Research and Quality (AHRQ) CDC
- Healthy People 2020
- The Center of Excellence for Transgender Care, UCS

**Discussion**: EBP guidelines are broadly based on 2 main sources: 1) The World Professional Association for Transgender Health standards & 2) Guidelines for the Primary and Gender-Affirming Care of Transgender and Gender Nonbinary People. Health science professionals are a product of our educational system. Once faculty are aware of transgender EBP guidelines perhaps we can improve the next generation of health science professionals.

**References**:
As the largest comprehensive cancer center in the world, The University of Texas MD Anderson Cancer Center (MDACC) is responsible for training the next generation of world leaders in cancer care. Uniquely MDACC is independent from a medical school; the focus of education is therefore shifted towards more advanced learners. For these professional, additional skills and knowledge must be constantly acquired, even after completion of official training. The existing models of continuing education are heterogeneous, based on field of practice, and have variable impact on performance. Thus, the development of non-clinical skills for healthcare educators, who serve as the front line in the experiential advanced training setting, is essential.

**Project Description:** Survey data gathered by the Department of Clinical Education at MDACC identified no existing structured inter-professional educator development programs offered internally; these results were a call to action. In order to meet the identified needs the Educator Professional Development Group (EPDG), an interdisciplinary working group, was formed. The workgroup’s mission is to provide curricula, resources, and opportunities to develop and enhance the competencies of clinical educators across disciplines at MDACC via a 3-tiered approach designed for: (1) all clinicians and trainees; (2) core educators; and (3) educational leaders and scholars. Implementing such a curriculum for clinical educators across specialties aims to not only prepare healthcare educators to be more effective leaders and teachers, but also provide essential inter-professional education. This is central to the unique mission of a comprehensive cancer center and was reinforced in the 2016 retreat survey and focus group outcomes.

**Results/Outcomes:** The EDPG has formed three working subgroups to aid in curriculum development, communication, and sustainability. In its first year the EDPG successfully added three GME trainee members, identified educational competences for the three tiers of learners outlined above, and selected the top 3 topics for professional development. Moreover, the EDPG is actively developing a curriculum tailored to the Tier 1 learners based on the highest rated needs from an assessment survey.

**Discussion:** This innovative curriculum devoted to the development and preparation of medical educators will not only address the unique educational needs of a comprehensive cancer centers, but also will demonstrate the importance and the impact that collaborative inter-professional education can have on the next generation of national leaders in health professionals education. Our team structure allows the curriculum developers (i.e. - out team members) to work and learn together (itself a form of IPE) facilitating development of future leaders.